Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[diaquabis (μ_{3}-hexamethylenetetramine) $\left[\mu_{2}-2,2^{\prime}\right.$-(piperazine-1,4diyl)bis(ethanesulfonato)]disilver(I)]: a three-dimensional pillared-layer framework encapsulating a water chain of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters

Peng Guo, ${ }^{\text {a,b }}$ Jing Wang, ${ }^{\mathrm{c}}$ Dao-cheng Pan ${ }^{\mathrm{a}}$ and Guo-Hai $\mathbf{X u}{ }^{\text {a,d }}$,

[^0]Received 24 June 2010
Accepted 13 August 2010
Online 24 August 2010
The title compound, $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$-$\left.12 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, consists of a two-dimensional Ag^{I}-hexamethylenetetramine (6,3) net pillared by the $2,2^{\prime}$-(piperazine-1,4-diyl)bis(ethanesulfonate) ligand, which lies across a centre of inversion. This compound can also be viewed as a $(3,4)$ connected topology by considering the hexamethylenetetramine ligand and the Ag^{I} ion as the three- and four-connected nodes, respectively. There is a one-dimensional channel along the a axis accommodating a water chain assembled by the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters.

Comment

Increasing attention is being paid to one-dimensional water chains because of their potential application in the biological transport of water, protons and ions (Ludwig, 2001; Konozo et al., 2002; Roux et al., 1999; Sreenivasulu et al., 2004). Recently, metal-organic frameworks (MOFs) (Eddaoudi et al., 2001), in which the isolated metal centre or the metal clusters are joined through the organic linkers to form an extended structure, have become a promising research field due to the vital roles of MOFs in gas separation, asymmetric catalysis and enantioselective separation. Meanwhile, the rational design of MOFs is conducive to the construction of a channel or cavity in the extended structure, providing a unique opportunity to encapsulate the water chains or water clusters. Among the family of MOFs, pillared-layer structures, with well defined
pores and structural diversity by modification of the pillar module, have been extensively investigated (Ren et al., 2009). We report herein a three-dimensional pillared-layer framework, $\left\{\left[\left\{\mathrm{Ag}^{\mathrm{I}} L 1\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2} L 2\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I), where $L 1$ is hexamethylenetetramine and $L 2$ is $2,2^{\prime}$-(piperazine- 1,4 -diyl)bis(ethanesulfonate), with a (3,4)-connected topology accommodating a water chain which is made up of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters in the one-dimensional channel.

(I)

The single-crystal X-ray diffraction study reveals that compound (I) is monoclinic and crystallizes in the centrosymmetric space group $P 2_{1} / n$. There are one Ag^{1} ion, one $L 1$ ligand, half an $L 2$ ligand, which lies across a centre of inversion, and seven water molecules in the asymmetric unit. All Ag^{1} ions show a distorted five-coordinate trigonal-bipyramidal configuration ($\zeta=0.6135$) (Anthony et al., 1984) with $\mathrm{N} 1, \mathrm{~N} 3^{\mathrm{i}}$ and $\mathrm{N} 4^{\mathrm{ii}}$ [symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x-1, y, z]$ atoms from three $L 1$ ligands in equatorial positions and two O atoms in axial positions (Fig. 1). The coordinated

Figure 1
A view of the local coordination of the Ag^{I} atom in (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms and isolated water molecules have been omitted for clarity. [Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x-1, y, z$; (vii) $-x+1,-y+1,-z+1$.]

(a)

(b)

(c)

Figure 2
(a) The connective environment of the Ag^{I} ion and the $L 1$ ligand; (b) the $(6,3)$ net; (c) a three-dimensional $(3,4)$-connected topology.
water interacts with the Ag^{I} ion very weakly, with a bond length of 3.077 (2) $\AA . \mathrm{Ag}^{\mathrm{I}}-\mathrm{N}$ bonds in the range 2.334 (2)2.381 (2) \AA and the $\mathrm{Ag}^{\mathrm{I}}-\mathrm{O}$ (sulfonate) bond length [2.514 (2) A; Table 1] are similar to previously reported values (Liu et al., 2009), while $\mathrm{N}-\mathrm{Ag}^{\mathrm{I}}-\mathrm{N}$ angles are in the range $113.10(8)-130.21(8)^{\circ}$. All the piperazine rings in the $L 2$ ligands adopt the most stable chair configuration, a finding similar to that of previous work (Sun et al., 2004). Since the Ag^{I} ion connects three $L 1$ ligands and the $L 1$ ligand coordinates with three Ag^{I} ions as well (Fig. 2a), the Ag^{I}-hexamethylenetetramine layer can be viewed as a two-dimensional $(6,3)$ net (Fig. 2b). It is worth noting that the adjacent $\mathrm{Ag} \cdots \mathrm{Ag}$ distances which are similar $[5.9827$ (4), 6.3421 (4) and 6.3902 (5) \AA] show the hexagonal nature of the layer. As shown in Fig. 2(c), pillared by the $L 2$ ligands, compound (I)

Figure 3
(a) A water chain along the c axis; (b) the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters; (c) a cyclic pentamer; (d) the simplified structure of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters. [Symmetry codes: (iii) $-x+1,-y,-z+1$.]
can also be presented as a $(3,4)$-connected topology by considering the $L 1$ ligand and Ag^{I} ion as three- and fourconnected nodes, respectively. It is of great interest to note that there is a one-dimensional channel along the a axis, providing an available void for the water chain or water cluster.

The fascinating feature of the title compound, (I), is the selfassembly of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters into a water chain within the one-dimensional channel of the $(3,4)$-connected topology. As shown in Fig. 3(a), the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters are composed of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$ clusters and two pendent waters $\left(\mathrm{O} 4 W\right.$ and $\left.\mathrm{O} 4 W^{\text {iii }}\right)$ (Fig. 3b). Five water molecules ($\mathrm{O} 1 W, \mathrm{O} 2 W, \mathrm{O} 5 W, \mathrm{O} 6 W$ and O7W) and their symmetry-related equivalents form a centrosymmetric decamer, which can also be viewed as two cyclic pentamers bridged across the inversion centre. Besides the cyclic hexamers (O1W, O5W, O6W and their symmetryrelated equivalents) with a chair conformation, which have also been found in previous structures containing $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters (Song et al., 2007), cyclic pentamers and octamers (O1W, O2W, O5W, O7W and their symmetry-related equivalents) are observed in these clusters. The hydrogenbonding distances between pairs of O atoms of the water cluster are in the range 2.740 (3) -2.866 (4) \AA, resulting in an average of $2.808 \AA$, while the angles of the hydrogen bonds among $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters span the range $150-178^{\circ}$ (Table 2). The 14 hydrogen bonds are mainly responsible for the stability of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters. The individual $\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters are connected through $\mathrm{O} 6 W-\mathrm{H} 62 \cdots \mathrm{O} 7 W^{\mathrm{vi}}$ hydrogen bonds (symmetry codes as in Table 2), generating an extended water chain which is further anchored into the one-dimensional channel by hydrogen-bonding interactions between the guest water chain and host framework (O3W-H31ㅇO 2^{i}, $\mathrm{O} 3 W-\mathrm{H} 32 \cdots \mathrm{O} 3^{\mathrm{iv}}$, $\mathrm{O} 4 W-\mathrm{H} 42 \cdots \mathrm{O} 3^{\mathrm{v}}, \mathrm{O} 5 W-\mathrm{H} 52 \cdots \mathrm{~N} 5^{\mathrm{v}}$ and O6W-H61 $\cdots \mathrm{N} 2)$.

Experimental

2,2'-(Piperazine-1,4-diyl)bis(ethanesulfonic acid) ($0.5 \mathrm{mmol}, 0.15 \mathrm{~g}$) and hexamethylenetetramine ($0.5 \mathrm{mmol}, 0.07 \mathrm{~g}$) were added to an aqueous solution (10 ml) of silver acetate $(0.5 \mathrm{mmol}, 0.084 \mathrm{~g})$. After stirring for 15 min , the precipitate was dissolved by dropwise addition of an aqueous solution of $\mathrm{NH}_{3}(14 \mathrm{M})$. Colourless crystals of complex (I) were obtained by evaporation of the solution for 2 d at room temperature.

Crystal data

$\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4}\right)_{2}-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1048.70$
Monoclinic, $P 2_{h} / n$
$a=6.3902$ (3) A
$b=31.1619(14) \AA$
$c=10.5428(5) \AA$
Data collection
Bruker-Nonius KappaCCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.200, T_{\text {max }}=0.303$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.094$
$S=1.14$
4128 reflections
$\beta=93.770(1)^{\circ}$
$V=2094.85(17) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=165 \mathrm{~K}$
$0.41 \times 0.28 \times 0.19 \mathrm{~mm}$

11631 measured reflections 4128 independent reflections 3382 reflections with $2 \sigma(I)$ $R_{\text {int }}=0.030$

All H atoms bound to C atoms were refined using a riding model, with a C -H distance of $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for CH_{2} atoms. The water H atoms were located in a difference Fourier map and their positions were initially refined under the application of an $\mathrm{O}-\mathrm{H}$ bond-length restraint of 0.85 (1) \AA. In the final refinement, these H atoms were constrained to ride on their parent atom with $U_{\text {iso }}(\mathrm{H})$ values set at $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We are grateful to Professor Ninghai Hu and Dr Yanfeng Bi (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) for their help.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3135). Services for accessing these data are described at the back of the journal.

References

Anthony, W. A. \& Rao, T. N. (1984). J. Chem. Soc. Dalton Trans. pp. 13491356.

Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.

Table 1
Selected geometric parameters ($\AA,{ }^{\circ}$).

$\mathrm{Ag} 1-\mathrm{N} 3^{\mathrm{i}}$	$2.334(2)$	$\mathrm{Ag} 1-\mathrm{N} 1$	$2.381(2)$
$\mathrm{Ag} 1-\mathrm{N} 4^{\mathrm{ii}}$	$2.336(2)$	$\mathrm{Ag} 1-\mathrm{O} 1$	$2.514(2)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 4^{\mathrm{ii}}$	$130.21(8)$	$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 1$	$86.47(8)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1$	$114.09(8)$	$\mathrm{N} 4^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{O} 1$	$106.97(8)$
$\mathrm{N} 4^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{N} 1$	$113.10(8)$	$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 1$	$91.88(8)$

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x-1, y, z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O} 6 W$	0.85	2.03	2.866 (4)	166
$\mathrm{O} 1 W-\mathrm{H} 12 \cdots \mathrm{O} 5 W^{\text {iii }}$	0.85	1.94	2.764 (4)	164
$\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{O} 5 W$	0.85	1.99	2.836 (4)	178
$\mathrm{O} 2 W-\mathrm{H} 22 \cdots \mathrm{O} 7 W$	0.85	2.03	2.867 (3)	168
$\mathrm{O} 3 W-\mathrm{H} 31 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.85	2.00	2.818 (3)	163
$\mathrm{O} 3 W-\mathrm{H} 32 \cdots \mathrm{O} 3{ }^{\text {iv }}$	0.85	1.96	2.797 (3)	169
$\mathrm{O} 4 W-\mathrm{H} 41 \cdots \mathrm{O} 2 W$	0.85	1.93	2.772 (4)	171
$\mathrm{O} 4 W-\mathrm{H} 42 \cdots \mathrm{O} 3^{\text {v }}$	0.85	2.04	2.885 (3)	172
$\mathrm{O} 5 W-\mathrm{H} 51 \cdots \mathrm{O} 6 W$	0.85	2.03	2.794 (4)	150
O5W-H52 . $\mathrm{N}^{\text {v }}$	0.85	2.06	2.897 (4)	169
O6W-H61 \cdots. N 2	0.85	2.05	2.890 (4)	170
O6W-H62 . ${ }^{\text {O } 7 W^{\text {vi }}}$	0.85	1.99	2.797 (3)	158
$\mathrm{O} 7 W-\mathrm{H} 71 \cdots \mathrm{O} 3 W$	0.85	2.01	2.841 (3)	167
$\mathrm{O} 7 W-\mathrm{H} 72 \cdots \mathrm{O} 1 W$	0.85	1.89	2.740 (3)	175

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+1,-y,-z+1$; (iv) $x+\frac{1}{2},-y+\frac{1}{2}$, $z-\frac{1}{2}$; (v) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (vi) $x+1, y, z$.

Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.
Konozo, D., Yasui, M., King, L. S. \& Agre, P. (2002). J. Clin. Invest. 109, $1395-$ 1399.

Liu, H. Y., Wu, H., Ma, J. F., Yang, J. \& Liu, Y. Y. (2009). Dalton Trans. 38, 7957-7968.
Ludwig, R. (2001). Angew. Chem. Int. Ed. 40, 1808-1827.
Ren, H., Song, T. Y., Xu, J. N., Jing, S. B., Yu, Y., Zhang, P. \& Zhang, L. R. (2009). Cryst. Growth Des. 9, 105-112.

Roux, B. \& MacKinnon, R. (1999). Science, 285, 100-102.
Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Song, H. H. \& Ma, B. Qi. (2007). CrystEngComm, 9, 625-627.
Sreenivasulu, B. \& Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 57695772.

Sun, D., Cao, R., Bi, W., Li, X., Wang, Y. \& Hong, M. (2004). Eur. J. Inorg. Chem. pp. 2144-2150.

[^0]: ${ }^{\text {a }}$ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, ${ }^{\mathbf{b}}$ Graduate School of the Chinese Academy of Sciences, Changchun 130022, People's Republic of China, ${ }^{\text {c College of Material Science and }}$ Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China, and ${ }^{\mathbf{d}}$ Key Laboratory of Jiangxi University for Functional Materials Chemistry, Department of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
 Correspondence e-mail: xugh308@gmail.com

